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An anisotropic triangular Ising model in which the first- and second-order 
parameters and the field parameters are functionally related is solved exactly 
by representing the distribution of the atom patterns in terms of a suitably 
constructed Markov process. The probabilities of patterns, defined as the 
probabilities generated by this process, are a mathematically tractable 
alternative to the classical representation of these probabilities in terms of 
the partition function. The interaction and field parameters of this Ising 
model, its magnetization, free energy, and its nearest neighbor correlation 
functions, are expressed in terms of the parameters of this Markov process. 
Special cases are worked out in detail and numerical examples are given. 
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1. INTRODUCTION 

The evaluation o f  the probabilities o f  a tom patterns obeying the Ising model  
involves a knowledge of  the part i t ion function. The parti t ion function o f  the 
Ising model  has not  been found, except for the special case- -where  the 
external field parameter  B is z e r o - - k n o w n  as the Onsager solution. <l-a~ Here 
it is shown that  an anisotropic triangular Ising model in a field can be 
solved, provided the interactions and field strength satisfy a certain condit ion 
Unfortunately,  this condit ion is temperature dependent. In  zero field it 
implies that  the model  is at its disorder point. (4'5~ The general fo rm of  this 
relation is defined by Eqs. (24), which reduce to (30). Fol lowing methods 
developed by the au thor  in earlier papers, (6~ the solution is achieved by 
construct ing a suitable Markov  process to represent the probabil i ty distribu- 
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tion of the atom patterns. As a mathematically tractable example of this 
method, it is proposed to represent a family of generalized Ising distributions 
of atom patterns on the triangular lattice in terms of a Markov process on the 
lattice. The parameters of this family of generalized Ising distributions will be 
expressed in the parameters of the Markov process. The Markov representa- 
tion thus achieved will be used to find the partial derivatives of the free energy 
or, equivalently, the coverage (or magnetization) and the first and second 
correlation functions as well as the free energy of the Ising model itself 
[cf. (38)]. 

It is anticipated that by inventing suitable Markov processes involving 
transition probabilities with respect to more complex atom patterns on the 
two preceding rows it will be possible to extend the methods developed in 
this paper to represent more complex Ising models or use these processes to 
match higher order correlation functions. 

2. THE ISING MODEL ON THE TRIANGULAR LATTICE 

Consider the triangular lattice, represented in Fig. 1. All sites of the lattice 
are topologically equivalent; each site has four diagonal neighbors and two 
horizontal ones. This feature is illustrated in Fig. 2, where sites around the 
site ~: are labeled 1 or 2 according to whether they are diagonal or horizontal 
neighbors. 

Let the coordinates (i, j )  of a site be defined as in Fig. 3, and let the 
indicator variable tL~,j for the site (i, j )  take the value + 1 when the site carries 
an atom and the value - 1  when the site (i, j)  is empty ( ~  < i <  ~ ,  
- o o  < j < ~) .  Let ~ represent the collection of all tz~.j specified for the 
triangular lattice. The generalized Ising probability of any pattern of atoms 
on the triangular lattice may then be formally written 

f~(a) = ( l /Z)exp[Kl(~ t~,,~tx~+l,j + ~ tz~,jt~,j+~) 

+ K~ ~ tzi,jt~+l,j+l + B ~ mr] (1) 

where the partition function Z is 

Z = ~ exp[Kl(E/~,,y/~i+l,s + E/~i,J/z,,J+l) 
Ix 

+ K2 ~/~tz~+l,j+z + B ~ m j ]  (2) 

S Fig. 1. The anisotropic triangular lattice. 
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[ I 

Fig. 2. Diagonal and horizontal neighbor sites around the 
site ~:. l [ 

in which K1,/s and B are expressible in the first two coupling constants and 
the field by the factor 1/kT (cf. Thompson(a~). 

Consider the removal of  an atom from the site (i, j ) ,  which has nl 
diagonal neighbor atoms and n2 horizontal neighbor atoms. The ratio 
N,w~2(K~, K2, B) of the probabilities of the atom pattern on the lattice with 
/z~j = + 1 and/~j  = - 1, i.e., before and after the removal of the atom from 
the site (i, j), is 

Nnln2(K1,/(2, B) = exp(4nlK~ - 8K2 + 4n2K2 - 4K2 + 2B) 

= exp(2B - 8/(1 - 4Kz)exp(4K~nl)exp(4Ken2) (3a) 

The ratio of the probabilities before and after placing an atom on an empty 
site (~, j )  with ~ diagonal neighbor atoms and g2 horizontal neighbor atoms 
is ~-1~2(K~,/s B). The effect of one removal from a site (i, j )  and one place- 
ment of an atom on a site (~,j) in this manner is equivalent to a transfer of an 
atom from the site (i, j )  to the site (f, j ) .  The ratio of the probabilities of the 
patterns on the lattice before and after such a transfer is 

~ l -~ , ,2_zz(K1, / (2)  - - - - -  exp[4Kl(n~ - ~ ) ]  exp[4K2(n2 - n2)] (3b) 

As a first step toward finding a Markov representation of the generalized 
Ising distribution defined by (1), it is proposed to construct a distribution 
which has the removal ratio (3a) and the transfer ratio (3b) of the generalized 

Fig. 3. Coordinates (i, j) for the sites of the triangular 
lattice. 
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Ising distribution. This distribution will be called the P distribution to dis- 
tinguish it from the fr distribution defined by (1). 

3. DEFINITION OF THE P DISTRIBUTION OF A T O M  
PATTERNS ON THE TR IANGULAR LATTICE 

Consider the sawtooth arrangement of sites ~:1, ~2,... embedded in the 
triangular lattice as illustrated in Fig. 4. 

Let the superscript �9 as in ~k ~ indicate the presence of an atom on the 
site ~e and let the superscript �9 as in ~~  indicate that there is no atom on the 
site ~ .  Consider the Markov process defined on the sawtooth sites of Fig. 1 
by the probabilities 

Prob{~:~+ll~:k'} = a, Prob{~:~+~}~:~'} = 1 - a 
(4)  

Prob{s ~ = b, Prob{~+~l~:~ ~ = 1 - b 

where the vertical bars are read as "given that." 
Since under this process the probability that a site carries an atom de- 

pends only on whether or not an atom is present on the preceding site, the 
probability 0 that a sawtooth site carries an atom must satisfy 

which reduces to 

o = (1 - O)b + Oa (5) 

0 = b/[(1 - a) + b] (6) 

This probability is known as the numerical density of the atoms, and is called 
the coverage of the lattice. It is equal to �89 + M), where M is the magnetiza- 
tion of the lattice. 

The sawtooth arrangement of sites illustrated in Fig. 1 may be regarded 
as consisting of two horizontal rows of sites. The probability distributions of 
the atom patterns on each row, taken separately, areidentical and each depends 
on the other in the same way. From the distribution of atom patterns on the 
two rows of sites defined by (4) one may determine the probability distribu- 

~- ~ - _  - 7 7  - _  - / - . ,  
\ / \ / k / \ 

k \ k \ 

- - 5  . . . . . .  8 

\ / \ / / \ 

Fig. 4. Sawtooth a r r a n g e m e n t  o f  sites ~1, ~2 . . . .  e m b e d d e d  in  t h e  t r i a n g u l a r  la t t ice .  
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tion of patterns on one row given the pattern on the other. For  instance, the 
pattern on the sites ~:~ and ~k + 2 on one row determines the probability of an 
atom on the site on the other row. The probabilities of interest for the purpose 
of this paper may be presented and defined as follows: 

 {,v'pt p}-z p},z 

(7) 

where a vertical bar is read as "given that," solid circles represent atoms, and 
open circles represent empty sites. 

The conditional probabilities defined by (7) of patterns on one row given 
the patterns on the other are readily expressed in terms of the parameters a 
and b of the Markov process defined by (4). Thus 

= (1  - 0 ) b ( 1  - a ) / { ( 1  - 0 ) ( 1  - b )  z + (1  - 0 ) b ( 1  - a ) }  ( 8 )  

= b ( 1  - a ) / [ ( 1  - 6 )  2 + b ( 1  - a ) ]  

where 1 - 0 is the probability that a site is empty and the probabilities of 
successive atoms and empty sites are defined by (4). Hence 

x = b ( l - a ) / [ b ( 1 - a ) + ( 1 - b ) 2 ] ,  1 - x = ( 1 - b ) 2 / [ b ( l - a ) + ( l - 6 )  2 ] 

y = a / ( 1  + a - b ) ,  1 - y = ( 1 - b ) / ( l  + a - b )  (9) 

z = a2 /[a  2 + (1 - a)b],  1 - z = (1 - a ) b / [ a  2 + (1 - a)b] 

Starting with a pattern on a row of sites, one may generate the probability of 
patterns on the next row with the aid of the probabilities (9). Repeated 
application to successive rows generates a probability for any specified 
pattern on the triangular lattice. The probability distribution of atom patterns 
defined by this Markovian row-by-row process is stationary and forms a 
two-parameter family of P distributions. 
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4. R E M O V A L  A N D  T R A N S F E R  RATIOS OF THE P 
D I S T R I B U T I O N S  

Let u~, v~, ~ ,  e, v2, ~2, and u~ stand for the indicator variables for a site 
and its neighbors on the first two shells as illustrated in Fig. 5. Then from the 
row-by-row process defined by (7) it follows that whatever the pattern 
(ulvlvgu2), the following hold: 

{ ~ }/ { ~ ) -- --b(l-a) 
P ul u, P ul u, =F(u l ,  vl, v,,u2)-(~.S-b- ~ 

vl v~ vl v2 (10) 

V 1 I) 2 I.) 1 I) 2 

= F(ul, vl, v2, uz) - -  
a 

l - b  

(11) 

.{u. t/.(ui ut 
$)I V2 V l  IJ2 

= F ( u l ,  v l ,  vz ,  U z )  - -  

a 2 

( 1  - a)b 

(12) 

where F(ul, vl, v2, u2) depends only on the pattern (utv~v2uz). 
The ratios (11)/(10) and (12)/(1!) both reduce to a(1 -b) /b(1  - a )  

irrespective of the pattern (u~v~v2u2). Let An1 stand for the pattern on a site 
and its diagonal neighbor sites when the central site carries an atom and the 
number of atoms on these four diagonal neighbor sites is nt. Similarly, let 
B,1 stand for the pattern obtained from An1 by removing the central atom. 
Then (u~A,tu2) defines a pattern on a site and its diagonal neighbor and 
(u~B,uu2) represents the pattern obtained from it by removing the central 
atom. It follows from the invariance of the ratios (11)/(10) and (12)/(11) that 

P(ulA,uu~) _ a(1 - b ) P ( u I A n l - l U z )  [a(1 - b)]nl P(u~Aoue) 
P ( u l B . l u z  ) b(1 - a) P(u lBn~- lu2)  = [b(1 a)J P(ulBou2) 

(13) 

U l ~  U2 
vl v2 

Fig. 5. Indicator variables ul, v~, ft, vz. v2, and u2 for 
a site and its six neighbor sites. 
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T h e  l a s t  f a c t o r  o f  ( I3 )  is a r a t i o  o f  p r o b a b i l i t i e s  o f  p a t t e r n s  be fo re  a n d  a f t e r  

r e m o v a l  a n d  m a y  be  exp re s sed  as a r a t i o  o f  p r o b a b i l i t y  o f  s imp le r  p a t t e r n s  

by  n o t i n g  t h a t  the  p r o b a b i l i t y  P(uiAou2) m a y  be  wr i t t en  in  t e r m s  o f  the  p a t t e r n  
(u~, e, u2) w i th  e = 1. Th i s  gives 

.P(uaAoU2) = P(ul, 1, u2)(1 - z)2~(1 - y)m-~,~)(1 - z)Z~'2(1 - y ) m - , ~ )  

S imi l a r ly ,  

/ 1  - z\=(u*+u= ) 
= P ( u l ,  1, u=)[-~--~. . ]  (1 - y)4 

\ l  - - y  I 
(14) 

a n d  

P(u, - -  l i e  = 0)  = [ba + (1 --  b)b] 
(18b)  

P(ul = O [ e = O ) =  [b(1 - a ) + ( 1 - b )  21 

I t  fo ] lows  b y  us ing  (18a) a n d  ( t S b )  t h a t  

P(u~, 1, u2) = O[a 2 + (1 - a)b]"l+~2[a(1 - a)  + (1 - a)(1 - b)]2-~1-~2 (19) 

a n d  t h a t  

P(u,,O,u=) = (1 - O)[ba + (1 - b)b]*'l+'~2[b(1 - a) + (I  - b)212-"1-"= (20) 

/ 1 -- y\2O, x +u2) 
= P ( < ,  o,  (1 - (15)  

so t h a t  the  r a t i o  (15)/(14) b e c o m e s  

P(u,,P(ul'A~ u2) = [(1-(lZ)-(ly;X)]=~ \'-~-Z'--~] ~ O, u2) (16) 

T o  r educe  the  las t  f a c to r  o f  (16) f u r t h e r  i t  wil l  be  c o n v e n i e n t  to  no t e  t h a t  
f r o m  the  M a r k o v  p r o c e s s  de f ined  b y  (4) i t  fo l lows  t h a t  

P ( e  = 1, u~  = 1)  = O[a  2 + (1  - a)b] 
P(e --  1, u ,  = O) --- O[a(1 - a) + (1 - a)(1 - b)] (17a) 

a n d  

P(e = O, u l  = 1) = (1 - O)[ba + (1 - b)b] 

P(e = O, u l  = O) = (1 - O)[b(1 - a) + (1 - b) 2] ( lVb)  

w h i c h  i m m e d i a t e l y  y ie lds  the  c o n d i t i o n a l  p r o b a b i l i t y  o f  ul  g iven e, as 

P(ul = l i e  = 1) = [a 2 + (1 - a)b] 
(18a)  

P(u~ = O[e = 1) = [a( l  - a)  + (1 --  a)(1 - b) l  
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and hence 

P(ua, 1, u2) 0 
P(ul, O, u2) 1 - 0 

[a(1 - a) + (1 - a)(1 - b)] 2 
[b(1 - a) + (1 - b)212 

a 2 + (1 - a)b b(1 - a) + (1 - b)2].2 
x a ( l - a ) + ( 1  - a ) ( l - b )  ba57(1 7b~b ] (21) 

where n2 as before stands for the number of horizontal neighbor atoms. 
By substituting (20), the expression (12) reduces to 

P(ulA,,Iu2) = { i  0~0_ 0 [1 - y~4 l~__i_,a) + (1 - a)(1 - b)]2\[a(1 - b___)l'~' 
P(u~B.~u.) \ ~ - x ]  [a( tv , , , - -  a) 7F (-1 ~-by~]ff Jib'0(1 a)] 

(1 - z)=(1 - x) 2 [a 2 + (1 - a)b][b(1 - a) + (1 - b)21"~"2 
x ~" - - ~ i  [--~(1 ~ a)-~- 0 ---a)b][b-a-+ (1 b ~ J  

-- R,,~,,=(a, b) (22a) 

Since x, y, and z are expressible in terms of a and b with the aid of formulas 
(9), the removal ratio Rnl,~=(a, b) depends only on a, b, n, and n2. When an 
atom with n, diagonal neighbor atoms and n= horizontal neighbor atoms is 
transferred to an empty site with fi, diagonal neighbor atoms and fi= horizontal 
neighbor atoms, then the transfer ratio, i.e., the ratio of the probabilities of 
the.atom patterns on the lattice before and after the transfer, is T~ z _ n~.,= _ n=(a, b) 
and reduces to 

[a(l  - b)]"~-nl 
T~l_nl,n2_~..(a, b) = [b(1 a)] 

J'(1 - z)2(1 - x) 2 
• \ (1 - y ) ~  

x [a(1 [a=+- a) (1~+ a)b][b(l_z ~ ---b~a)[ba+ + (1 .~  b )  2 ])b]}"2- ~2 

(22b) 

5. THE IDENTITY OF THE FAMILY OF P DISTRIBUTIONS 
A N D  A FAMILY OF ISING DISTRIBUTIONS ON THE 
TR IANGULAR LATTICE 

The removal ratio ~1~2(K1, K2, B) for the generalized Ising model 
defined by (3a) and the removal ratio R,w~2(a, b) of the P distribution may be 
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made identical by choosing the parameters K1, K2, and B to satisfy the condi- 
tions 

e4K1 _ a(1 - a) 
b(1 -- a) 

e,K2 = (1 - z)2(1 - x) 2 ~ 2  + (1 - a)b][b( l  - a) + (1 - b) z] 
(1 - y ) 4  [a(1 - a) + (1 - a)(1 - b)][ba + (1 - b)b] 

(23b) 

e2B_SKI_~K 2 0 (1 -- y)~ [a(1 -- a) + (1 - a)(1 - b)] 2 (23c) 
= 1 -- 0(1 -- x) 4 [b(1 - a) + ( 1  -b)212 

After expressing x, y, and z in terms of  a and b using (9) and some reduction, 
it follows that 

e~K1 = a(1 - b) /b(1  - a) (24a) 

e4K2 = b(1 - a)(1 + a - b)2/ (a  2 + b - ab)(1 - b + 62 - ab)  (24b) 

e 2B = a2(1 - b + b z - ab) / (1  - b)2(a 2 + b - ab)  (24c) 

showing that the family of generalized Ising distribution with parameter  
values K1, K2, and B matching a and b as in (24a)-(24c) has removal and 
placement ratios identical with the P distribution with parameters a and b. 
Thus the placement of  successive atoms on the lattice affects the probability 
of  the patterns under the two distributions equally. 

F rom the definition of transfer ratios in terms of  removal and placement 
ratios it follows that the transfer ratios of  the two distributions are also identical 
when the parameters are matched. For  a given pattern with coverage 0 any 
other pattern with coverage 0 may be obtained by transfers of  atoms. The 
probability of  any pattern obtained in this way may be expressed in the 
probability of  the given pattern by a factor which is the same under the two 
distributions. Since the sum of the probabilities of  all patterns is unity, the 
probability of  the given pattern must be the same under the two distributions. 
It  follows that the probability of  each pattern is the same under the two 
distributions, i.e., the generalized Ising distribution is identical with the P 
distribution when their parameters are matched by (24a)-(24c). The relations 
between K1, K2, and B defined by (24a)-(24c) may also be obtained explicitly 
by eliminating a and b. Thus, after rewriting (24a) as 

b = a/[(1 - a)e'~'~ + a] (25a) 

o r  

(1 - b) = (1 - a)e~r~/[(1 - a)e~:~ + a] (25b) 
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it may  be used to simplify (24c) to 

1 + [a/(1 - b)]e-~X* 

1 + [(1 - b)/a]e-~K, 

where 

1 + R e - 4 r ~  
= e 2B = (26) 

1 + (1/R)e-aK~ 

a = (e2B+4K~ -- e4K1) + [(e 2B -- e~K~) 2 + 4e2B] 1/2 (27) R = 1 _--S-- ~ 

Using (27) in (25b), we obtain 

a = (1 - a)e~K~ (28) 
R (1 -- a)e4K~ + a 

so that  

a = (1 + R) + [(1 - R)  2 + 4Re-4K1] lj2 
2(1 - e-4tq)  (29) 

The relation between K1, K2, and B, which results by substituting (29) and 
(25a) in (24b), may  conveniently be expressed as (v 

e~K2 cosh2(2K1) - 1 = e4~Cl(e-~K~ -- 1) sinh 2 B (30) 

which is readily verified by substituting directly in (30) with (24a)-(24c). 

6. C O R R E L A T I O N  F U N C T I O N S  A N D  FREE E N E R G Y  

Differentiation of  the free energy, defined as (1-3) 

- r  == - lira 
N ~ o o  

where ZN is the part i t ion function for  
sites, gives (1) 

( O I O B ) ( - r  = 

( e / eK1) ( -  r  = 

(a /eKe)( -  r  = 

[( lnZN)/N]  (31) 

a large, torus-wrapped lattice of  N 

(t~i,j) (32a) 

2(ff~,~/z~,j + 1) (32b) 

(tz~,j ff~ + 1, j + 1) (32c) 

F o r  Ising distributions on the tr iangular lattice identical with P distributions, 
expressions (32a)-(32c) may  be derived directly f rom the Markov  process (4) 
defining the P distribution. This gives 

2b 
(/z,,s) = 0 (+1)  + ( 1 -  0 ) ( - 1 ) =  - 1  + 2 0 =  - 1  + ( l _ a ) + b  (33a) 

i.e., 

- 1  -t-_ 1 
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similarly 

( t~dm, j+~)  = Oa(+l)  + 0(1 - a ) ( -  1) + (1 - 0)(1 - b ) (+  1) + (1 - 0 ) ( -  1) 

which, by using (5), reduces to 

(iz~,jlz~,j+~) 4ab - 3b + 1 - a 4b(1 - a) (34a) 
= 1 - a + b  = 1 (1 - a ) + b  

i.e., 

(34b) 

l + a - b  
+ In [a(1 - b)] 1/2 

(38) 
which satisfies (36) and (37). 

To  find </z,,d.t~+~,j+l>, note  that  the relative positions of  the indicator 
variates c and ua defined in Section 4 are as that  of  my and tt~+l,j+~. Using 
the equations (17a) and (17b) developed for  c and u~, it follows that  

(/x~,jtt~+l,r = O[a 2 + (1 - a )b] (+  1) + 0[a(l - a) + (1 - a)(l  - b ) ] ( -  1) 

+ (1 - O)[ba + (1 - b ) b ] ( - 1 )  

+ (1 - 0)[b(1 - a) + (1 - b)2](+ 1) (35a) 

i.e., 

( _  ~_~T) = b [ 2 a 2 +  2 ( I -  a ) b + 2 b a +  2(1 - b)b - 2] 
OK2 1 - a +  b 

+ [1 - 2ba - 2(1 - b)b] (35b) 

The  derivatives of  the free energy with respect to a and b may be written as 

(36) 

O--'B - = ~ - B  - ~-b  + ~ - ~ 1  - - - ~ - ' + ~ - ~ 2  - ~ b  

(37) 

where the r.h.s, o f  Eqs. (36) and (37) are expressible in a and b by substituting 
the partial derivatives of  the free energy just  derived and the partial deriva- 
tives of  (24a)-(24c). I am indebted to Baxter (v) for  the formula 

~b = - K 2 + l n  l + a - b  
k T  [a(1 - b)p '2 

1 b(1 - a)(1 + a -  b) z 
- I n  4 [a 2 + b(1 - b)][(1 - b) 2 + b(1 - a)] 
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7. T H E  SPECIAL  CASES a = b ,  a = O,  a = 1 - b 

7.1 .  T h e  S p e c i a l  C a s e  a = b ( I n d e p e n d e n c e )  

When the atoms are independently distributed on the lattice, we have 

a = b  

Substitution of (39) in (24a)-(24c) gives 

e4K1 = 1, e4r2 = 1, 

(39) 

e 2B = a/(1 - a) (40) 

Since /(2 = 0, the subfamily of Ising models represented by (40) is also a 
subfamily of Ising models, viz., the mathematically trivial family of inde- 
pendent distributions of atoms. Within this subfamily the parameter value 
a = �89 makes B = 0, i.e., yields a trivial member of the one-parameter family 
of Onsager solutions. 

7.2. The Special  Case a = 0 (Exc lus ion)  

When the atoms are large enough to exclude the presence of other atoms 
on the first shell of sites around it, we have K1 = - o% i.e., 

a = o 0 1 )  

Substitution of (41) in (243)-(24c) and (6) gives 

e~K1 = 0 (42a) 

e'X~ = (1 - b)2/[b + (1 - b) 21 (42b) 

e2B = 0, i.e., B = - o ~  (42c) 

0 = b/(1 + b) (43) 

Of particular interest in this case is the proportion of " f r ee"  sites, 
defined as empty sites with empty diagonal neighbor sites. An empty site with 
four empty diagonal neighbor sites is just the pattern Bo defined in Section 4. 
Thus 

f = P(Bo) = (1 - 0){(1 - b)[(1 - b)(1 - x) + b(1 - y)]}2 (44) 

When a = 0 this reduces to 

1 (1 - b)" (45) 
f =  1 + ~ b + ( 1 - b )  2 

ranging from zero to unity as 0 goes from zero to �89 
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Table I. Paired Values for e4K1 and e4K2 when 0 = �89 

e4K1 0.1000 0 . 2 5 0 0  0 . 5 0 0 0  0 . 7 5 0 0  1 . 0 0 0 0  2 . 0 0 0 0  4.0000 
e4K2 0.3306 0 . 6 4 1 0  0 . 8 8 8 9  0 . 9 7 9 6  1 . 0000  0 . 8 8 8 9  0.6400 

7 . 3 .  T h e  S p e c i a l  C a s e  a = 1 - b (0 -- �89 

When the coverage 0 = �89 it follows f rom (6) that 

b -- 1 - a (46) 

Substitution of (46) in (24a)-(24c) gives 

e'K1 = a2/(1 - a) 2 (47a) 

e'~'2 = 4a2(1 - a)2/[a 2 + (1 - a)2] 2 (47b) 

e 2B = 1, i.e., B = 0 (47c) 

Elimination of the parameter  a from Eqs. (47a)-(47c) gives the required 
relation between K1 and/ :2  explicitly as 

tanh K2 + tanh2 K1 = 0 (48) 

Equation (40) is just the condition (4'5~ that the model is at the disorder 
point (oscillatory when b > a and monotonic to a > b). (4~ 

The values of e4K2 are tabulated for selected values of  e4~1 in Table I, 
which shows that the second interaction parameter  K2 is closer to zero (i.e., 
independence) than the first interaction parameter  K1. 
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